
Fast Linear Algebra-Based Triangle Counting
with KokkosKernels

Michael M. Wolf, Mehmet Deveci, Jonathan W. Berry, Simon D. Hammond, Sivasankaran Rajamanickam
Center for Computing Research, Sandia National Laboratories

Albuquerque, NM 87185
{mmwolf,mndevec,jberry,sdhammo,srajama}@sandia.gov

Abstract—Triangle counting serves as a key building block for
a set of important graph algorithms in network science. In this
paper, we address the IEEE HPEC Static Graph Challenge prob-
lem of triangle counting, focusing on obtaining the best parallel
performance on a single multicore node. Our implementation
uses a linear algebra-based approach to triangle counting that
has grown out of work related to our miniTri data analytics
miniapplication [1] and our efforts to pose graph algorithms in
the language of linear algebra. We leverage KokkosKernels to
implement this approach efficiently on multicore architectures.
Our performance results are competitive with the fastest known
graph traversal-based approaches and are significantly faster
than the Graph Challenge reference implementations, up to
670,000 times faster than the C++ reference and 10,000 times
faster than the Python reference on a single Intel Haswell node.

I. BACKGROUND

A. Triangle Counting

The problem of triangle counting in an undirected graph
G is to find a single integer: the number of three-cycles
(triangles) in G. The number of triangles in a graph is
an important metric that is used in many network analysis
applications, including social network analysis [2], spam de-
tection [3], link recommendation [4], and dense neighborhood
graph discovery [5]. Furthermore, triangle counting serves as a
building block or starting point for additional important graph
algorithms such as triangle enumeration or listing, k-truss
computation [6], and subgraph isomorphism. This motivates
triangle counting as one of the Graph Challenge problems [7].

In the case of dense graphs, triangle counting is not practical
since there are O(n3) triangles and hence cubic work. How-
ever, many real graphs (social networks and others) have the
welcome property that the number of triangles is O(n). This is
shown in Berry et al. [8], along with an argument that a simple
algorithm called MinBucket [9] does this optimal amount
of work. There is extensive literature on triangle counting,
including approximate methods [10], which bases its counts on
a subset of the spectrum of G, sampling methods [11], which
samples two-paths or wedges and generates provably good
bounds on triangle counts, and big data methods [12], [13],
which leverage MapReduce or similar paradigms to obtain
triangle counts for graphs that do not fit on one machine.

In this paper, we focus on a linear algebra-based approach
to triangle counting that has grown out of work related to
our miniTri triangle-based miniapplication [1] and our efforts

to pose graph algorithms in the language of linear algebra.
We focus on triangle counting on a single compute node,
leveraging KokkosKernels [14] to implement this approach
efficiently. We obtain results that are competitive with the
fastest known graph traversal-based approaches.

B. Linear Algebra Primitives for Graph Algorithms

The Graph BLAS [15], [16] community has been working
to standardize a set of building blocks to solve graph prob-
lems in the language of sparse linear algebra. Many graph
computations can be efficiently written in terms of linear alge-
bra [17], including breadth-first search, betweenness centrality,
and triangle counting/enumeration [1], [18] (discussed further
in the next subsection). To complement this algorithmic work,
there are several implementations related to the Graph BLAS
effort: CombBLAS [19], Graphulo [20], D4M [21], GPI [22],
GraphPad [23], and the GraphBLAS Template Library [24].

The promise of high performance is one of the appealing
aspects of this linear algebra approach to graph algorithms
(another being the synergy with explicitly algebraic graph
algorithms such as spectral partitioning). If hardware vendors
could optimize this small set of sparse linear algebra opera-
tions, then a large number of graph kernels could be computed
in a performant manner. However, it is still an open question
whether this performance will be realized. There have been
some promising results (e.g., [25]). However, linear algebra-
based graph kernels have traditionally underperformed in our
comparisons with graph traversal library counterparts. In this
paper, we show positive results for a new linear algebra-based
triangle counting implementation. We believe that this is a
potentially disruptive event that could affect the design of
kernels within generic graph libraries such as the MTGL [26].

C. Linear Algebra-Based Triangle Counting Algorithms

In this subsection, we discuss two linear algebra-based
triangle counting algorithms found in the literature.

1) Adjacency and Incidence Matrix Based Method: In
previous work, we developed a Graph BLAS like approach for
triangle enumeration in terms of an overloaded sparse matrix-
matrix multiplication operation C = A ·H , where A and H
are the the adjacency and incidence matrices of the graph,
respectively [1]. A simplified version of this algorithm can be
used for triangle counting and is used in the Graph Challenge

C++, Python, and Matlab reference implementations. Although
this approach is useful for more complex graph calculations
such as triangle enumeration and k-truss computation, it is
typically less performant than the adjacency matrix-based
triangle counting algorithm that is presented below.

2) Adjacency Matrix Based Method: In previous work,
Azad, et al. described a triangle counting algorithm in terms
of sparse matrix-matrix multiplication followed by an element-
wise matrix multiplication: D = (L · U). ∗A, where A is the
adjacency matrix for the graph, L is the lower triangular part
of A, and U is the upper triangular part of A [18]. This algo-
rithm was the basis for the Graph Challenge Julia reference
implementation. For this algorithm, each entry C(v1, v2) in
the resulting matrix C = L ·U contains a count of all wedges
(paths of length 2) in the graph with endpoints v1 and v2 and
different midpoints ui. The subsequent element-wise matrix
multiplication operation D = C. ∗A filters out (or masks) all
the wedges that have end points (v1, v2) that are not connected
by edges in the graph and thus are not triangles.

Use of the triangular matrices L and U restricts the triangles
found such that v1 > ui, v2 > ui for a triangle formed
from wedge v1 − ui − v2. However, this method counts each
triangle twice since it counts both (v1, ui, v2) and (v2, ui, v1)
as separate triangles. Furthermore, implementing this triangle
counting algorithm with the sparse matrix-matrix multiplica-
tion followed by the element-wise multiply is problematic
since the number of wedges in a graph can be prohibitively
large (much larger than the number of triangles). However,
Azad, et al. explain how these operations can be fused with
the element-wise multiply being incorporated as a mask [18].

For these linear algebra-based algorithms to be impactful,
we need implementations of these algorithms in software
frameworks that provide performance-portability - the ability
to write kernels at an abstract level, yet exploit advanced
architectures effectively. In this work, we leverage such a
framework, Kokkos [27], and KokkosKernels, a library of lin-
ear algebraic kernels that use Kokkos, to achieve performance-
portability for our triangle counting method.

D. KokkosKernels and Optimized SpGEMM

In a recent work, we introduced a Kokkos-based [27]
SpGEMM method, KKMEM [28]. KKMEM is designed for
portability, hence it runs and performs well on various archi-
tectures such as traditional CPUs, NVIDIA GPUs and Intel
Knights Landing (KNL) architectures. The proposed methods
in this paper use and extend the KKMEM algorithm.

KKMEM is a hierarchical 1D/2D row-wise algorithm. First,
it assigns the multiplication of each row to threads. Then, dif-
ferent multiplications within the row are assigned to different
vector lanes. KKMEM is a two-phase algorithm: the number
of nonzeros of each row of the resulting matrix is calculated
in the first (symbolic) phase, then the actual matrix values are
computed in the second (numeric) phase. In graph problems,
the numeric phase is not necessary when only the structure
(and not the values) of the resulting matrix is desired.

KKMEM uses a compression technique to encode multiple
columns of right hand side matrix with fewer integers. This
reduces the number of operations and the memory require-
ments in the symbolic phase. This also allows using bitwise
operations from union/intersection of different rows. KKMEM
has the option to use sparse hashmap based accumulators or
dense accumulators. A uniform memory pool data structure
is used in the sparse hashmap for better memory scalability.
However, the sparse accumulators require more operations
than a dense accumulator. We choose dense accumulators for
smaller problems and sparse accumulators otherwise. These
data structures are used with minimal changes in this paper.

II. TRIANGLE COUNTING ALGORITHM

In this section, we describe a new linear algebra-based trian-
gle counting algorithm that we have designed and implemented
for the Graph Challenge. We describe algorithm enhancements
that can have significant impact on performance and discuss
details of our KokkosKernels implementation.

A. Triangle Counting Algorithm: (L× L). ∗ L
We have implemented a new variant of the adjacency

matrix-based triangle counting method described above and
originally outlined in [18]. Using the lower triangle portion
of the adjacency matrix (instead of the full adjacency ma-
trix) on the right hand side of the element-wise multiply
(D = (L×U). ∗L) counts each triangle exactly once instead
of twice as in (D = (L × U). ∗ A). However, each triangle
is still “counted” twice, only one of which is counted after
the element-wise multiplication. (i.e., for triangle (v1, ui, v2),
both (v1, ui, v2) and (v2, ui, v1) will be initially counted by
SpGEMM).

A further improvement can be made by replacing U by L
in the sparse matrix matrix multiplication: D = (L × L). ∗
L. This enhancement adds a constraint such that C(v1, v2)
(resulting from L × L) is a nonzero if and only if v1 > v2,
which reduces the wedges stored in C. Typically, we also see
a reduction in the number of operations and runtime as a result
of this constraint. Thus, for this challenge, we have chosen to
implement (L× L). ∗ L instead of (L× U). ∗A.

B. KokkosKernels-Based Triangle Counting

Here, we describe the KokkosKernels-based implementation
of our L × L based triangle counting algorithm and discuss
related implementation details. Algorithm 1 outlines the ba-
sic steps that takes place in the overloaded KokkosKernels
KKMEM operation that is used for triangle counting. The
matrix multiplication traverses each row v of L (each vertex
in the graph). It creates a local hashmap H, and inserts the
neighboring vertices of v, L(v) (corresponding to nonzero
columns in row L(v)). For each nonzero column u of L(v), the
nonzero columns y of L(u) are traversed. If a column (vertex)
y is in the previously created hashmap H, this corresponds to
a triangle.

The overall complexity of Line 2 is O(E). For a vertex
u, the amount of the work of Line 4 is dL(u) (the number

Algorithm 1 (L× L).*L
Require: Matrix L

1: for each row (vertex) v ∈ L do
2: Create a hashmap H, and insert columns L(v) into H.
3: for each nonzero column (vertex) u ∈ L(v) do
4: for each nonzero column (vertex) y ∈ L(u) do
5: Query y in H

of nonzeros in row u) and this line is executed for u, as the
number of nonzeros in column u of L or dL

′
(u). As a result,

each row u results in dL
′
(u)× dL(u) amount of work.

C. “Reordering” adjacency matrices

Since only the lower portion of the matrix is used in the
computation, the performance of (L × L). ∗ L depends on
the order of the rows in the adjacency matrix and can be
greatly improved with a good ordering (e.g., one that reduces
the number of nonzeros in L). As explained in the previous
section, the cost a row (v) in L is proportional to dL(v),
the number of nonzeros in that row. However, the row is
accessed as many times as it appears in the columns of L,
which is dL

′
(v). Thus, the required number of multiplications

for the row is dL
′
(v) × dL(v), and the overall number of

multiplications is
∑

v∈V dL
′
(v)× dL(v).

Reordering to reduce the operation count for L × L is
complicated (unlike L× U) since reducing dL(v) for a given
v tends to increase dL

′
(v), and vice versa. For this challenge,

we chose to sort the rows by decreasing vertex degree (largest
number of nonzeros at the top), which tends to decrease dL(v)
and increase dL

′
(v) for high degree vertices.

It is also important to note that we do not explicitly reorder
the matrix rows when forming the matrix L since this would
be needlessly expensive. Instead, we keep the row ordering
the same and choose the maximum column number in which
a row can have a nonzero based on the row number that the
row would obtain if we had performed this reordering. Thus,
the resulting matrix L is not a lower triangular matrix but a
permutation of a lower triangular matrix.

D. Masking non-triangle wedges

As previously described by Azad et al. [18], the element-
wise multiplication can be combined with the sparse
matrix-matrix multiplication operation, with D = (L ×
U). ∗ A being replaced by a single function D =
MaskedSpGEMM(L,U,A). This operation avoids the creation
of all wedges, greatly reduces the peak memory usage, and
can reduce the number of operations. We apply a similar
masking technique to our new algorithm and implement D =
MaskedSpGEMM(L,L,L) with KokkosKernels. In order to
avoid storing all the wedges, when a row i in L is multiplied
with L, the resulting nonzeros are masked to include only the
nonzeros that exist in row i of L and thus could be a triangle.

III. RESULTS

A. Reference Implementations

It was challenging working with the serial reference imple-
mentations of this Graph Challenge. The Python, Julia, and
Matlab codes explicitly store counts for all wedges in the
graph. This is problematic since typically there are many more
wedges in a graph than there are triangles. We saw this as we
ran out of memory when running these reference implementa-
tion for the larger graphs. The C++ reference implementation
that we previously developed [1] does not suffer from this
(since it only stores the triangles) but is significantly slower
than the Python reference. Our compromise was to run both
the Python and C++ reference implementations, so that we
could run all the graphs with C++ and get a more reasonable
baseline with the Python reference when memory was not
an issue. For the largest graphs, the predicted runtimes for
the C++ reference implementation would require months of
runtime, so we provide a rough execution time estimate for
these (average time per row for a week long run multiplied
by the number of rows).

In addition to the two Graph Challenge reference imple-
mentations, we also compare against the parallel merge-based
triangle counting method (TCM) proposed in [29], which we
consider state-of-the-art and has shown some of the best results
in the open literature. No previous linear algebra-based method
has achieved runtimes similar to a specialized graph method
such as TCM.

B. Datasets

Table I lists the 25 graphs used in our numerical experi-
ments, along with the number of vertices (|V |), edges (|E|),
and triangles (|T |) in the graphs. We chose the 20 most time
consuming graphs (based on the reference implementations)
and five additional large graphs (highlighted in the table)
that are commonly used in the literature from [30], in order
to have some large non synthetic graphs in this data set.
We used the Matrix-Market formatted files provided by the
Graph Challenge for all graph challenge problems except for
Friendster, which we converted from the TSV format (due
to an initial error with the Matrix-Market file). We used
publicly available Matrix-Market files from the SuiteSparse
Matrix Collection for the five additional problems, following
the Graph Challenge procedure of symmetrizing the matrices.
To run TCM, we converted these matrix-market format to the
Ligra format that is used by TCM [29].

C. Performance Results

The bulk of our numerical experiments we ran on a compute
node with dual Intel Xeon Haswell processors (E5-2698 v3 @
2.30GHz, 32 cores total, with 2 hyperthreads per core) and 512
GB of memory. Each method was compiled with the Intel icc
17.1 compiler, and 32 bit integers are used for vertex indices
and edge indices (unsigned for the edges) for all methods. For
each method, we timed everything after the adjacency matrix,
incidence matrix, and/or graph was read into the methods
native data structure. For our KokkosKernels implementation

TABLE I
GRAPHS SORTED BY THE NUMBER OF EDGES. COLUMNS LIST THE

NUMBER OF VERTICES, EDGES, AND TRIANGLES. HIGHLIGHTED GRAPHS
ARE GRAPHS NOT PROVIDED BY GRAPH CHALLENGE.

Graph |V| |E| |T|
cit-HepTh 27,770 352,285 1,478,735
email-EuAll 265,214 364,481 267,313
soc-Epinions1 75,879 405,740 1,624,481
cit-HepPh 34,546 420,877 1,276,868
soc-Slashdot0811 77,360 469,180 551,724
soc-Slashdot0902 82,168 504,230 602,592
flickrEdges 105,938 2,316,948 107,987,357
amazon0312 400,727 2,349,869 3,686,467
amazon0505 410,236 2,439,437 3,951,063
amazon0601 403,394 2,443,408 3,986,507
graph500-scale18 174,147 3,800,348 82,287,285
graph500-scale19 335,318 7,729,675 186,288,972
graph500-scale20 645,820 15,680,861 419,349,784
cit-Patents 3,774,768 16,518,947 7,515,023
graph500-scale21 1,243,072 31,731,650 935,100,883
soc-LiveJournal1 4,847,571 42,851,237 285,730,264
wb-edu 9,845,725 46,236,105 254,718,147
graph500-scale22 2,393,285 64,097,004 2,067,392,370
graph500-scale23 4,606,314 129,250,705 4,549,133,002
graph500-scale24 8,860,450 260,261,843 9,936,161,560
graph500-scale25 17,043,780 523,467,448 21,575,375,802
uk-2005 39,459,925 783,027,125 21,779,366,056
it-2005 41,291,594 1,027,474,947 48,374,551,054
twitter-2010 41,652,230 1,202,513,046 34,824,916,864
Friendster 65,608,366 1,806,067,135 4,173,724,142

(TCKK), this included the times to order the rows, to construct
matrix L, to compress of matrix L, and to compute the masked
sparse matrix-matrix multiplication operation. For the parallel
methods TCM and KokkosKernels, we ran each graph for 1,
2, 4, 8, 16, and 32 threads. We also ran each graph on 64
threads (2 threads per core).

Table II shows the average runtimes for the C++ serial refer-
ence implementation (estimated runtimes are designated with
∗ for prohibitively slow problems), the Python serial reference
implementation (MEM denotes graphs requiring too much
memory to complete), the TCM method, and our KokkosKer-
nels implementation (TCKK). For TCM and TCKK, we report
the best time across the different numbers of threads up to
32 threads. The cells in the table that are highlighted in red
represent the best execution times (or execution times that
are within 1% of the best time). From this table, we see that
TCKK is much faster than the C++ and Python reference
implementations and is as fast or faster than TCM for 24 of
25 graphs, the only outlier being Friendster. We also report
the Graph Challenge rate, which is defined to be the number
of edges in the graph divided by the triangle counting time, of
TCKK for each graph. We see a best rate of 386 million edges
per second for all graphs (uk-2005) and 154 million edges per
second for the Graph Challenge graphs (graph500-scale20).

Additional speedups were achieved by running on 64
threads (2 threads per core) as shown in Table III. For the
parallel methods, we report the best time up to 64 threads.
Again, we see that TCKK is much faster than the C++ and
Python reference implementations. Across the set of graphs,
TCM scales better than TCKK from 32 to 64 threads. How-

TABLE II
BEST AVERAGE TRIANGLE COUNTING TIMES (IN SECONDS) UP TO 32

THREADS ON INTEL HASWELL. ∗ INDICATES APPROXIMATE RUNTIMES.
RED HIGHLIGHT = BEST TIME FOR A GRAPH.

Reference times(s) TCKK
Graphs C++ Python TCM Time (s) Rate

cit-HepPh 2.03E+1 4.85E+0 1.04E-2 4.41E-3 7.99E+7
cit-HepTh 3.14E+1 7.41E+0 9.79E-3 5.03E-3 7.25E+7

email-EuAll 1.05E+2 2.46E+1 6.64E-3 5.80E-3 7.00E+7
soc-Epinions1 6.56E+1 1.56E+1 1.71E-2 3.90E-3 1.08E+8

soc-Slashdot0811 4.80E+1 1.41E+1 1.86E-2 6.11E-3 7.68E+7
soc-Slashdot0902 5.26E+1 1.51E+1 1.89E-2 6.30E-3 8.01E+7

amazon0312 3.43E+1 9.89E+0 2.27E-2 7.54E-2 3.07E+7
amazon0505 3.72E+1 1.22E+1 2.20E-2 1.77E-2 1.33E+8
amazon0601 3.65E+1 1.19E+1 2.08E-2 1.84E-2 1.32E+8
flickrEdges 1.06E+3 1.82E+2 1.87E-1 1.86E-2 1.32E+8

graph500-scale18 7.94E+3 1.05E+3 2.67E-1 1.33E-1 2.85E+7
graph500-scale19 2.38E+4 MEM 5.98E-1 2.73E-1 2.84E+7

cit-Patents 1.80E+2 5.68E+1 1.42E-1 4.97E-1 3.15E+7
graph500-scale20 7.00E+4 MEM 1.01E+0 1.07E-1 1.54E+8
graph500-scale21 2.22E+5 MEM 2.38E+0 1.07E+0 2.96E+7
soc-LiveJournal1 9.46E+3 MEM 1.06E+0 7.33E-1 5.85E+7

wb-edu 9.24E+3 MEM 5.57E-1 2.32E-1 1.99E+8
graph500-scale22 8.84E+5 MEM 5.57E+0 3.07E+0 2.09E+7
graph500-scale23 4.57E+6* MEM 1.39E+1 8.84E+0 1.46E+7
graph500-scale24 8.39E+6* MEM 3.39E+1 2.43E+1 1.07E+7
graph500-scale25 2.08E+7* MEM 8.31E+1 6.89E+1 7.60E+6

uk-2005 5.48E+5* MEM 6.85E+0 2.03E+0 3.86E+8
it-2004 2.14E+6* MEM 1.76E+1 4.59E+0 2.24E+8

twitter-2010 1.30E+6* MEM 9.78E+1 5.10E+1 2.36E+7
Friendster 1.12E+6* MEM 6.69E+1 7.73E+1 2.34E+7

ever, TCKK is still as fast or faster than TCM for 22 of the
25 graphs. The graphs where TCM is as good as TCKK are
three of the R-MAT graphs (scale 23-25) and Friendster. Due
to the randomness/irregularity of the edge connectivity of these
graphs (at least in the current ordering), the compression used
by TCKK is not effective, compressing the graph by at most
3%. For TCKK, we see a best rate of 637 million edges per
second for all graphs (uk-2005) and 198 million edges per
second for the Graph Challenge graphs (amazon0312).

Figure 1 shows the speedups of our KokkosKernels trian-
gle counting implementations relative to the serial reference
implementations on Intel Haswell. These speedups are signif-
icant, with a best speedup of almost 670, 000 when compared
to the C++ reference and a best speedup of over 11, 000 when
compared to the Python reference (for those problems that
could run). Figure 2 shows the speedups of our KokkosKernels
triangle counting implementations relative to TCM. For the
synthetic R-MAT graphs, we see a speedup of up to 1.93 times.
However, for the largest R-MAT graph, TCKK is 23% slower
than TCM. For the other graphs, we see a speedup for all but
one of the graphs (Friendster), with a best speedup of 4.5.
TCKK is 37% slower than TCM for Friendster.

D. Scalability

Figure 3 shows the strong scaling speedup of TCKK on the
graph500-scale23 graph. TCKK scales well to the point that
the number of threads equals the number of cores, but does not
benefit much (from additional hyperthreads) after that. TCM,
however, is able to scale well with two hyperthreads per core.
This could be partially attributed to the different runtimes and
programming model used (Kokkos/OpenMP vs Cilk).

TABLE III
BEST AVERAGE TRIANGLE COUNTING TIMES (IN SECONDS) UP TO 64

THREADS ON INTEL HASWELL. * INDICATES APPROXIMATE RUNTIMES.
RED HIGHLIGHT = BEST TIME (OR WITHIN 1% OF BEST TIME) FOR A

GRAPH, PINK HIGHLIGHT = WITHIN 5% OF BEST TIME.

Reference times(s) TCKK
Graphs C++ Python TCM Time (s) Rate

cit-HepTh 3.14E+1 7.41E+0 9.79E-3 3.78E-3 9.33E+7
email-EuAll 1.05E+2 2.46E+1 6.64E-3 4.80E-3 7.59E+7

soc-Epinions1 6.56E+1 1.56E+1 1.71E-2 4.82E-3 8.42E+7
cit-HepPh 2.03E+1 4.85E+0 9.56E-3 2.97E-3 1.42E+8

soc-Slashdot0811 4.80E+1 1.41E+1 1.56E-2 4.89E-3 9.60E+7
soc-Slashdot0902 5.26E+1 1.51E+1 1.71E-2 5.14E-3 9.82E+7

flickrEdges 1.06E+3 1.82E+2 1.15E-1 5.04E-2 4.59E+7
amazon0312 3.43E+1 9.89E+0 1.28E-2 1.19E-2 1.98E+8
amazon0505 3.72E+1 1.22E+1 1.37E-2 1.31E-2 1.87E+8
amazon0601 3.65E+1 1.19E+1 1.30E-2 1.25E-2 1.96E+8

graph500-scale18 7.94E+3 1.05E+3 1.82E-1 9.44E-2 4.03E+7
graph500-scale19 2.38E+4 MEM 3.17E-1 2.24E-1 3.46E+7
graph500-scale20 7.00E+4 MEM 6.23E-1 4.15E-1 3.78E+7

cit-Patents 1.80E+2 5.68E+1 9.65E-2 8.96E-2 1.84E+8
graph500-scale21 2.22E+5 MEM 1.29E+0 8.81E-1 3.60E+7
soc-LiveJournal1 9.46E+3 MEM 5.73E-1 3.63E-1 1.18E+8

wb-edu 9.24E+3 MEM 2.52E-1 1.61E-1 2.88E+8
graph500-scale22 8.84E+5 MEM 3.12E+0 2.42E+0 2.65E+7
graph500-scale23 4.57E+6* MEM 7.67E+0 7.66E+0 1.69E+7
graph500-scale24 8.39E+6* MEM 1.90E+1 2.14E+1 1.21E+7
graph500-scale25 2.08E+7* MEM 4.68E+1 6.05E+1 8.66E+6

uk-2005 5.48E+5* MEM 5.52E+0 1.23E+0 6.37E+8
it-2004 2.14E+6* MEM 1.11E+1 3.20E+0 3.21E+8

twitter-2010 1.30E+6* MEM 5.67E+1 4.32E+1 2.78E+7
Friendster 1.12E+6* MEM 3.55E+1 5.64E+1 3.20E+7

1

10

100

1000

10000

100000

1000000

Gr
ap
h5
00
_1
8

Gr
ap
h5
00
_1
9

Gr
ap
h5
00
_2
0

Gr
ap
h5
00
_2
1

Gr
ap
h5
00
_2
2

Gr
ap
h5
00
_2
3*

Gr
ap
h5
00
_2
4*

Gr
ap
h5
00
_2
5*

cit
-‐H
ep
Th

em
ai
l-‐E
uA

ll
so
c-‐
Ep
in
io
ns
1

cit
-‐H
ep
Ph

so
c-‐
Sl
as
hd
ot
08
11

so
c-‐
Sl
as
hd
ot
09
02

Fl
ick

rE
dg
es

Am
az
on
03
12

Am
az
on
05
05

Am
az
on
06
01

cit
-‐P
at
en
ts

so
c-‐
Liv

eJ
ou
rn
al

w
b-‐
ed
u

uk
-‐2
00
5*

it-‐
20
04
*

tw
itt
er
-‐2
01
0*

Fr
ie
nd
st
er
*

Sp
ee
du
p

TCKK	 Speedups	 Relative	 to	 C++	 and	 Python	 References

C++ Python

Fig. 1. Speedups relative to serial reference implementations (64 threads). *
indicates approximate runtimes.

Figure 2 also shows the scaling of TCKK as the graph sizes
grow (left to right) for the synthetic R-Mat graphs (Graph500*
– left grouping) and the non synthetic graphs (right grouping).
While TCKK achieves significant speedup when compared to
TCM on several problems, it also demonstrates an area of
improvement for TCKK. For graphs where compression does
not help much (e.g., R-Mat graphs and Friendster), TCM is
able to catchup to TCKK performance and even do better on
two large instances. The contributing factor here relates to a
data structure choice. The KokkosKernels SPGEMM symbolic
phase allocates a thread local hash table based on an estimate
(see [28]). Typically compression helps KokkosKernels to

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

Gr
ap
h5
00
_1
8

Gr
ap
h5
00
_1
9

Gr
ap
h5
00
_2
0

Gr
ap
h5
00
_2
1

Gr
ap
h5
00
_2
2

Gr
ap
h5
00
_2
3*

Gr
ap
h5
00
_2
4*

Gr
ap
h5
00
_2
5*

cit
-‐H
ep
Th

em
ai
l-‐E
uA

ll
so
c-‐
Ep
in
io
ns
1

cit
-‐H
ep
Ph

so
c-‐
Sl
as
hd
ot
08
11

so
c-‐
Sl
as
hd
ot
09
02

Fl
ick

rE
dg
es

Am
az
on
03
12

Am
az
on
05
05

Am
az
on
06
01

cit
-‐P
at
en
ts

so
c-‐
Liv

eJ
ou
rn
al

w
b-‐
ed
u

uk
-‐2
00
5*

it-‐
20
04
*

tw
itt
er
-‐2
01
0*

Fr
ie
nd
st
er
*

Sp
ee
du
p

TCKK	 Speedup	 Relative	 to	 TCM

Fig. 2. Speedups relative to TCM reference implementation (64 threads).

5

50

500

1 2 4 8 16 32 64

Ex
ec
ut
io
n	
Ti
m
e	
(s
)

Number	 of	 Threads

Triangle	 Counting	 Time

TCM

TCKK

Fig. 3. Strong scaling of TCM and TCKK on graph500-scale23.

arrive at better estimates. However, compression is not very
effective on the graph500 graphs resulting in large thread
local memory allocation affecting performance as graph sizes
increase. This could be alleviated by non-uniform thread local
memory allocation. We leave this for future work.

E. Other Architectures

To demonstrate the performance of the KKMEM on a
broader spectrum of high-performance, highly-threaded com-
pute nodes, we have additionally benchmarked the code on
nodes using Intel’s Knights Landing (KNL) self-hosted many-
core 7250 Xeon Phi processor (which has 68 4-way-SMT
cores running at 1.4GHz) and IBM’s OpenPOWER POWER8
variant which offers dual-socket nodes of 8-core sockets. For
POWER8, each core provides 8-way SMT threading. The
experiments using the KNL in this paper are run in quadrant-
cache mode which uses the high-bandwidth MC-DRAM of the
processor as a cache for the slower, DDR4 system-capacity
memory. In each case, we configure our benchmarking runs
to utilize OpenMP’s close-policy and select either cores or
threads as appropriate. The best runtimes are presented below
due to space considerations and are selected by performing

TABLE IV
BEST AVERAGE TCKK TRIANGLE COUNTING TIMES (IN SECONDS) AND

RATES (EDGES PER SECOND) FOR DIFFERENT ARCHITECTURES. RED
HIGHLIGHTED CELLS = BEST TIME FOR A GRAPH. BLUE HIGHLIGHTED

CELLS DESIGNATE HIGHEST RATE FOR ALL GRAPHS AND 20 GRAPH
CHALLENGE GRAPHS.

Intel Haswell Intel KNL IBM Power 8
Graphs Time (s) Rate Time(s) Rate Time(s) Rate

cit-HepTh 3.78E-3 9.33E+7 5.98E-3 5.90E+7 3.22E-3 1.09E+8
email-EuAll 4.80E-3 7.59E+7 6.00E-3 6.07E+7 3.71E-3 9.83E+7

soc-Epinions1 4.82E-3 8.42E+7 9.61E-3 4.22E+7 4.82E-3 8.41E+7
cit-HepPh 2.97E-3 1.42E+8 3.99E-3 1.05E+8 2.13E-3 1.98E+8

soc-Slashdot0811 4.89E-3 9.60E+7 8.39E-3 5.59E+7 4.18E-3 1.12E+8
soc-Slashdot0902 5.14E-3 9.82E+7 8.80E-3 5.73E+7 4.38E-3 1.15E+8

flickrEdges 5.04E-2 4.59E+7 1.09E-1 2.12E+7 4.03E-2 5.75E+7
amazon0312 1.19E-2 1.98E+8 2.23E-2 1.05E+8 1.01E-2 2.30E+8
amazon0505 1.31E-2 1.87E+8 2.18E-2 1.12E+8 9.71E-3 2.51E+8
amazon0601 1.25E-2 1.96E+8 2.10E-2 1.17E+8 9.67E-3 2.53E+8

graph500-scale18 9.44E-2 4.03E+7 2.25E-1 1.69E+7 7.70E-2 4.94E+7
graph500-scale19 2.24E-1 3.46E+7 4.05E-1 1.91E+7 2.12E-1 3.64E+7
graph500-scale20 4.15E-1 3.78E+7 7.77E-1 2.02E+7 5.09E-1 3.08E+7

cit-Patents 8.96E-2 1.84E+8 8.20E-2 2.01E+8 7.18E-2 2.30E+8
graph500-scale21 8.81E-1 3.60E+7 1.91E+0 1.65E+7 1.37E+0 2.32E+7
soc-LiveJournal1 3.63E-1 1.18E+8 5.61E-1 7.64E+7 3.39E-1 1.26E+8

wb-edu 1.61E-1 2.88E+8 3.59E-1 1.29E+8 1.32E-1 3.50E+8
graph500-scale22 2.42E+0 2.65E+7 5.15E+0 1.25E+7 3.72E+0 1.72E+7
graph500-scale23 7.66E+0 1.69E+7 1.18E+1 1.10E+7 9.69E+0 1.33E+7
graph500-scale24 2.14E+1 1.21E+7 3.09E+1 8.43E+6 2.58E+1 1.01E+7
graph500-scale25 6.05E+1 8.66E+6 7.43E+1 7.05E+6 5.71E+1 9.16E+6

uk-2005 1.23E+0 6.37E+8 2.85E+0 2.75E+8 1.65E+0 4.75E+8
it-2004 3.20E+0 3.21E+8 1.03E+01 9.98E+7 5.92E+0 1.74E+8

runs of either 1 thread per core (i.e., ignoring SMT capabili-
ties) or all the threads per core (i.e., using all the available
SMT capabilities). Typically, smaller graphs require SMT-
1-based executions to reduce the overhead associated with
the synchronization of OpenMP parallel-constructs, whereas,
larger runs benefit from using all the available threading to
increase execution rates.

The benchmarked results are shown in Table IV (largest
graphs are not presented since they did not fit into memory on
all systems). We note that the POWER8 is a strong performer,
exceeding the performance rate of the Haswell in a number
of graphs at both smaller and large scales. Use of highly
randomized graphs (the Graph-500 collection) on the Knights
Landing, tends to show a significant reduction in performance
which correlates with our anecdotal experience that the weaker
cores provided on the Xeon Phi do not tolerate randomized
memory accesses as well as faster-clocked, functional-unit rich
multi-core systems.

IV. SUMMARY/CONCLUSIONS

Linear algebra-based approaches to graph algorithms show
great promise for impacting high performance data analytics
applications. In this paper, we presented such a linear algebra-
based approach to triangle counting as part of the IEEE HPEC
Graph Challenge. We introduced a new triangle counting algo-
rithm and leveraged Kokkos and KokkosKernels to implement
this algorithm in a very efficient manner. With minor modifica-
tions to the KokkosKernels sparse matrix-matrix multiplication
algorithm KKMEM, we were able to obtain a performance-
portable triangle counting implementation TCKK that runs
efficiently on many multicore architectures.

TCKK compares favorably to the serial Graph Challenge
reference implementations, executing 670, 000 times faster

than the C++ reference and up to 11, 000 times faster the
Python reference. We also compared TCKK with the paral-
lel merge-based triangle counting method (TCM) proposed
in [29], which has some of the best attributed results in the
open literature. TCKK compared favorably to TCM, perform-
ing as well or better for 24 out of 25 graphs when executing on
32 threads. One of TCKK’s main advantages over TCM was
the use of compression, which was beneficial on some of the
graphs but was not particularly helpful on the random synthetic
R-MAT graphs. Moving to 64 threads, TCM is able to scale
well with two hyperthreads per core while TCKK does not
benefit as much from the additional hyperthreads. However,
TCKK still performs as well or better than TCM for 22 out
of 25 of graphs when executing on 64 threads. The results of
this linear algebra-based method are compelling enough that
we believe that this (and other linear-algebra based kernels)
may soon impact the design of kernels within generic graph
libraries such as the MTGL [26].

This effort has also indicated several promising directions
for future work. The “reordering” step greatly impacts the
performance of the triangle counting. We presented a simple
reordering scheme (decreasing vertex degree), but have ob-
served that alternative reordering methods can lead to better
performance for some graphs (e.g., reducing the runtime for
Friendster by 40%), due to operation reduction or better load-
balancing. In the future, we plan to investigate the various
sorting options to obtain a method or heuristic that will work
for most graphs. We also plan to improve the scalability of
our implementation for high thread counts by moving from a
large uniform thread local memory allocation scheme to a non-
uniform thread local memory allocation. This will potentially
help performance for the large, irregular problems (e.g., large
R-MAT graphs) when executed on large numbers of threads. In
the future, we also plan to explore different architectures, in-
cluding GPUs. Since KKMEM has shown good performance
on GPUs [28] and our implementation is built on performance-
portable Kokkos, we expect fairly good performance with only
minor changes to our implementation. Finally, we plan on
extending this work to multiple nodes, leveraging decades of
experience related to distributed-memory sparse linear algebra
computations. Building on this experience and our on-node
TCKK implementation, our goal will be to find all triangles
in extreme-scale graphs (e.g., trillions of edges) in seconds.

ACKNOWLEDGMENT

The research presented in this paper was funded through
the Laboratory Directed Research and Development (LDRD)
program at Sandia National Laboratories, in the context of the
Multi-Level Memory Algorithmics for Large, Sparse Problems
Project. Sandia National Laboratories is a multi-mission lab-
oratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

REFERENCES

[1] M. M. Wolf, J. W. Berry, and D. T. Stark, “A task-based linear algebra
building blocks approach for scalable graph analytics,” in High Perfor-
mance Extreme Computing Conference (HPEC), 2015 IEEE. IEEE,
2015, pp. 1–6.

[2] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting
and sampling triangles from a graph stream,” Proceedings of the VLDB
Endowment, vol. 6, no. 14, pp. 1870–1881, 2013.

[3] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-
streaming algorithms for local triangle counting in massive graphs,”
in Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2008, pp. 16–24.

[4] C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Falout-
sos, “Spectral counting of triangles via element-wise sparsification
and triangle-based link recommendation,” Social Network Analysis and
Mining, vol. 1, no. 2, pp. 75–81, 2011.

[5] N. Wang, J. Zhang, K.-L. Tan, and A. K. Tung, “On triangulation-
based dense neighborhood graph discovery,” Proceedings of the VLDB
Endowment, vol. 4, no. 2, pp. 58–68, 2010.

[6] V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and
J. Kepner, “Graphulo: Linear algebra graph kernels for nosql databases,”
in 2015 IEEE International Parallel and Distributed Processing Sympo-
sium Workshop, May 2015, pp. 822–830.

[7] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,
“Static graph challenge: Subgraph isomorphism,” 2017, unpublished.

[8] J. W. Berry, L. A. Fostvedt, D. J. Nordman, C. A. Phillips, C. Seshadhri,
and A. G. Wilson, “Why do simple algorithms for triangle enumeration
work in the real world?” Internet Mathematics, vol. 11, no. 6, pp. 555–
571, 2015.

[9] J. Cohen, “Graph twiddling in a mapreduce world,” Computing in
Science & Engineering, vol. 11, no. 4, pp. 29–41, 2009.

[10] C. E. Tsourakakis, “Fast counting of triangles in large real net-
works without counting: Algorithms and laws,” in Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference on. IEEE, 2008, pp.
608–617.

[11] C. Seshadhri, A. Pinar, and T. G. Kolda, “Triadic measures on graphs:
The power of wedge sampling,” in Proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 2013, pp. 10–18.

[12] H.-M. Park, F. Silvestri, U. Kang, and R. Pagh, “Mapreduce triangle
enumeration with guarantees,” in Proceedings of the 23rd ACM In-
ternational Conference on Conference on Information and Knowledge
Management. ACM, 2014, pp. 1739–1748.

[13] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task, “Counting
triangles in massive graphs with mapreduce,” SIAM Journal on Scientific
Computing, vol. 36, no. 5, pp. S48–S77, 2014.

[14] KokkosKernels. [Online]. Available:
https://github/kokkos/kokkoskernels

[15] Tim Mattson et al., “Standards for graph algorithm primitives,” in Proc.
IEEE High Performance Extreme Comp. Conf., 2013.

[16] A. Buluc, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the graphblas api for c,” in Parallel and Distributed Processing
Symposium Workshops, 2017 IEEE International. IEEE, 2017.

[17] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011, vol. 22.

[18] A. Azad, A. Buluç, and J. R. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in Proceedings of the IPDPSW,
Workshop on Graph Algorithm Building Blocks (GABB), 2015. [Online].
Available: http://gauss.cs.ucsb.edu/ aydin/triangles-gabb.pdf

[19] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: Design,
implementation, and applications,” The International Journal of High
Performance Computing Applications, vol. 25, no. 4, pp. 496 – 509,
2011. [Online]. Available: http://gauss.cs.ucsb.edu/ aydin/combblas-
r2.pdf

[20] V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and
J. Kepner, “Graphulo: Linear algebra graph kernels for nosql databases,”
in Parallel and Distributed Processing Symposium Workshop (IPDPSW),
2015 IEEE International. IEEE, 2015, pp. 822–830.

[21] J. Kepner, W. Arcand, W. Bergeron, N. T. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic distributed
dimensional data model (d4m) database and computation system.” in
ICASSP. IEEE, 2012, pp. 5349–5352.

[22] K. Ekanadham, B. Horn, J. Jann, M. Kumar, J. Moreira, P. Pattnaik,
M. Serrano, G. Tanase, and H. Yu, “Graph programming interface: Ra-
tionale and specification,” IBM Research Report, RC25508 (WAT1411-
052) November 19, Tech. Rep., 2014.

[23] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L. Willke,
and P. Dubey, “Graphpad: Optimized graph primitives for parallel and
distributed platforms,” in Parallel and Distributed Processing Sympo-
sium, 2016 IEEE International. IEEE, 2016, pp. 313–322.

[24] P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda, and S. McMillan,
“Gbtl-cuda: Graph algorithms and primitives for gpus,” in 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2016, pp. 912–920.

[25] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat: High
performance graph analytics made productive,” Proceedings of the VLDB
Endowment, vol. 8, no. 11, pp. 1214–1225, 2015.

[26] Jonathan W. Berry et al., “Software and algorithms for graph queries
on multithreaded architectures,” in Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International. IEEE, 2007, pp.
1–14.

[27] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” J Parallel Distrib Comp, vol. 74, no. 12, pp. 3202–3216, 2014.

[28] M. Deveci, C. Trott, and S. Rajamanickam, “Performance-portable
sparse matrix-matrix multiplication for many-core architectures,” in
Parallel and Distributed Processing Symposium Workshops, 2017 IEEE
International. IEEE, 2017.

[29] J. Shun and K. Tangwongsan, “Multicore triangle computations without
tuning,” in Data Engineering (ICDE), 2015 IEEE 31st International
Conference on. IEEE, 2015, pp. 149–160.

[30] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, 2011.

